R20

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech I Year II Semester Regular Examinations November-2021 DIGITAL LOGIC DESIGN

(Common to CSE & CSIT)

	(Common to CSE & CSII)		
	Time: 3 hours	Max. N	Aarks: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks)		
	UNIT-I		
1	Reduce the following Boolean Expressions to the indicated number of literals:		
	a A'C'+ABC+AC'+AB to three literals.	L6	4M
	b $(X'Y'+Z)'+Z+XY+WZ$ to three literals.	L6	4M
	c A'B (D'+C'D)+B(A+A'CD) to one literal.	L6	4M
	OR		
2	a Convert the following numbers	L5	6M
	i) (41.6875) ₁₀ to Hexadecimal number		
	ii) $(11001101.0101)_2$ to base-8 andbase-4		
	b Subtract (111001) ₂ from (101011) using 2's complement?	L5	6M
	UNIT-II		
3	a Design the circuit by Using NAND gates	L6	6M
	F= ABC'+DE+AB'D'		
	b Design the circuit by Using NOR gates	L6	6M
	F = (X+Y).(X'+Y'+Z')		
	OR		
4	Simplify the Boolean expression using K-map?	L6	12M
	$F(A,B,C,D,E)=\sum m(0,1,4,5,16,17,21,25,29)$		
	UNIT-III		
5	a Explain about Binary Half Adder?	L2	6M
	b Implement the following Boolean function using 8:1 multiplexer	L5	6M
	F(A, B, C, D) = A'BD' + ACD + A'C'D + B'CD		
	OR		
6	a Design a 4 bit binary parallel subtractor and the explain operation in detail?	L5	6M
	b What is combinational circuits and explain analysis and design procedure of	L1	6M
	combinational circuits		
	UNIT-IV		
7	a Explain the Logic diagram of JK flip-flop?	L2	6 M
	b Explain about ripple counter?	L2	6M
	OR		
8	Explain the design of a 4 bit binary counter with parallel load in detail?	L2	12M

UNIT-V Design a Combinational circuit using PAL by considering the following L5 12M Boolean Functions given in sum of min terms: $W(A,B,C,D)=\Sigma M(2,12,13)$ $X(A,B,C,D)=\Sigma m(7,8,9,10,11,12,13,14,15)$ $Y(A,B,C,D)=\Sigma(0,2,3,4,5,6,7,8,10,11,15)$ $Z(A,B,C,D)=\Sigma(1,2,8,12,13)$ OR 10 a What is ROM? List the different types of ROMs. L1 **6M** b Implement following Boolean functions using PLA L5 **6M** $F1(A,B,C)=\Sigma m(0,1,3,5)$ and $F2(A,B,C)=\Sigma m(0,3,5,7)$

*** END ***

Q.P. Code: 20CS0503b